Что такое факториал?

Я думаю трудно найти человека, который не знал бы, что такое факториал. Но, чёрт возьми, такая красивая математическая операция, давайте поговорим о ней снова. Тем более постарался максимально доходчиво объяснить материал даже очень далеким от математики людям. Поехали!

Кто из Вас помнит, когда столкнулся с факториалом впервые? Я, например, абсолютно уверен, что первый раз увидел значок n! на советской микро-ЭВМ Электроника МК-71. Меня поразило, в первую очередь, как с помощью этой кнопки быстро переполняется буфер и выскакивает ошибка. Потом уже, начав изучать математику, удалось поближе познакомиться с этим зверем. Начнем с определения:

Лаконично и просто.

Лаконично и просто.

Факториал крут тем, насколько быстро возрастает его значение, и если 5! равен всего лишь 120, то 10! — уже 3 628 800‬, а, например, факториал 1000000 равен 8,263931688Е+5565708. Факториал возрастает быстрее чем экспонента и степенная функция и даже чем их произведение, но, однако уступает функции n в степени n.

Короткий пример вычисления факториала

Короткий пример вычисления факториала

Важное уточнение: 0! = 1, что следует из определения факториала.

Самым натуральным образом понятие «факториал» возникает в комбинаторике при попытке посчитать количество перестановок элементов множества. Например, пусть множество состоит из 4 шаров разного цвета: красного, синего, желтого и зеленого. Ответьте на вопрос: сколько существует способов укладки этих шаров (разный порядок — разный способ) ?

Если взять первым красный шар, а затем найти варианты расположения остальных — получим 6 вариантов. Перебрав все 4 шара получим 24 = 1*2*3*4=4! Таким образом, количество перестановок во множестве равно факториалу количества его членов.

Во-вторых, факториал применяется при расчете количества размещений — еще одной операции из мира комбинаторики. Суть ее проста, поясним ее на всё том же примере разноцветных шаров. Ответьте на вопрос: сколько способов отдельного размещения 2 шаров из представленных 4 (разный порядок — разный способ) ?

Всего имеется 12 вариантов размещения 2 элементов из 4. То, что мы сейчас посчитали руками формализуется следующим образом через факториал:

Читается как количество размещений из n элементов по m
Читается как количество размещений из n элементов по m

В-третьих, факториал присутствует в формуле количества сочетаний из n элементов по m. Сочетания отличаются от размещений тем, что если набор элементов одинаков — он не учитывается.

На рисунке обведены сочетания: как видно, их стало в 2 раза меньше. Формула вычисления количества сочетаний из n элементов по выглядит так:

Раз уж мы разобрались с перестановками, размещениями и сочетаниями, перейдем к «имени нарицательному», страшному и пугающему: биному Ньютона. Как окажется, знание факториала и последней формулы легко позволит Вам расколоть этот «крепкий орешек».

Как ни странно, бином Ньютона это выражение (1+x)^n и его легко найти через формулу сочетаний (доказательство естественно опустим). Вот небольшой пример нахождения бинома третьей степени, который легко перепроверить перемножением.

Не забудьте, что x в нулевой степени равен 1.
Не забудьте, что x в нулевой степени равен 1.

Разобравшись с этим примером, можете спокойно спорить с друзьями и знакомыми, что без проблем вычислите бином Ньютона n-ной степени!

Некоторые интересные свойства факториала

Во многих случаев, когда не требуется точного вычисления факториала не требуется, можно воспользоваться формулой Стирлинга:

Например, реальное значение факториала 5 — это 120. По формуле Стирлинга получается так:

Строго говоря, это только первый член бесконечного ряда. С увеличением количества членом приближение будет всё точнее

Строго говоря, это только первый член бесконечного ряда. С увеличением количества членом приближение будет всё точнее

Идем дальше. До этого мы условились, что в качестве подфакториальной переменной, рассматриваем только натуральные числа. А что, если бы нам захотелось вычислить факториал дробного числа? Оказывается, и такой факториал тоже существует.

Используются такие расчеты при статистическом описании нейронных сетей. Данные вычисления приближенные, чтобы точно вычислять значение таких факториалов, используется Гамма-функция. Но это уже совсем другая история.

Есть еще двойной факториал, обозначаемый n!!. Формула его вычисления зависит от четности или нечетности аргумента.

Думаю принцип понятен без дополнительных пояснений.

Думаю принцип понятен без дополнительных пояснений.

Кроме того, существует «король факториалов», так называемый суперфакториал, который равен произведению факториалов числа, меньше либо равного данному:

Ну а дальше пошло-поехало: придумали гиперфакториалы, которые равны произведениям суперфакториалов, а потом и вовсе обобщили в m-кратный факториал.

Вот еще несколько интересных свойств факториала и заканчиваем:

1) n! — никогда не является квадратом какого-либо числа.

2) при n>4 n! всегда оканчивается на 0.

3) при n>9 n! всегда оканчивается на 00.

Понравилась статья? Поделиться с друзьями:
Математика не для всех
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: